### MIAUMIAU LABS

This is our tech playground. Lately we are tinkering with the GPU.

### Beziers (our approach…!)

12, Mar 2010/Categories AS3, General/3 Comments

Bezier curves are widely used in Flash for many effects, from tweening one property to drawing complex curves and surfaces, but we  have never found one Class that would allow us to work with them the way we wanted to.

Our main goal writing one Class for Bezier manipulation is to have one tool that calculate Bezier interpolations for curves and surfaces of any degree, so the first thing to do was to study the mathematical model of the Bezier curves in these useful article. In the article the Bezier curves are treated as a combination of the Berstain polinomials which uses the factorial function that requires many calculations for high degrees.

The previous problem is solved calculating the coefficients of the curve for the given control points and saving them on a buffer Array that helps us to speed up the calculation process for further interpolations. As the article suggests the interpolation of any curve is given in the [0 – 1] domain.

The class itself is this one:
[as]
package math {
import flash.geom.Vector3D;

/**
* @author miaumiau.cat
* Clase que se encarga de generar una parametrización
* Bezier de trayectoria o superficie.
*
*/
public class Bezier {

//Variable que determina si se trabaja en 3D…
public static var _3D : Boolean = false;

//Variable que permite tener los datos de la combinatoria para cada grado…
private static var combinatoriaData : Array = new Array();

//A partír de 2 se tienen la cantidad mínima de puntos para interpolar
combinatoriaData[3] = new Array(1, 2, 1);
combinatoriaData[4] = new Array(1, 3, 3, 1);
combinatoriaData[5] = new Array(1, 4, 6, 4, 1);
combinatoriaData[6] = new Array(1, 5, 10, 10, 5, 1);
combinatoriaData[7] = new Array(1, 6, 15, 20, 15, 6, 1);
combinatoriaData[8] = new Array(1, 7, 21, 35, 35, 21, 7, 1);
combinatoriaData[9] = new Array(1, 8, 28, 56, 70, 56, 28, 8, 1);
combinatoriaData[10] = new Array(1, 9, 36, 84, 126, 126, 84, 36, 9, 1);
combinatoriaData[11] = new Array(1, 10, 45, 120, 210, 252, 210, 120, 45, 10, 1);
combinatoriaData[12] = new Array(1, 11, 56, 165, 330, 462, 462, 330, 165, 56, 11, 1);

//Variables estáticas que permiten guardar los valores de segmentación de la malla (evita recalcular la cantidad de puntos…)
private static var Ne : uint = 0;
private static var Nn : uint = 0;
private static var paramsE : Array = new Array();
private static var paramsN : Array = new Array();

//Variable que contiene las constantes de la curva bezier para un grado y una parametrización (cantidad de puntos) fija.
private static var coeficientesCurva : Array = new Array();

//Función que calcula los coeficientes de la curva…
public static function bezier(t : Number, controlPoints : Vector.) : Vector3D {

var salida : Vector3D = new Vector3D;
var coeficientes : Array = new Array();
var i : uint;
var length : uint = controlPoints.length;
var n : uint = length – 1;

//Si los valores de la combinatoria para la cantidad de puntos no estan definidos, los defino…
}

//Determino los coeficientes…
for (i = 0;i <= n; i++) {
coeficientes[i] = combinatoriaData[length][i] * Math.pow(t, i) * Math.pow((1 – t), (n – i));
}

//Obtengo los valores de salida del vector3D…
for(i = 0;i <= n; i++) {
salida.x += coeficientes[i] * controlPoints[i].x;
salida.y += coeficientes[i] * controlPoints[i].y;
salida.z += coeficientes[i] * controlPoints[i].z;
}
salida.w = 1;

return salida;
}

//Función que se encarga de obtener un conjunto de puntos xyz agrupados en un array para una curva bezier…
public static function bezierPoints(m : uint, controlPoints : Array, borderDistance : Number = -1) : Vector. {
var salida : Vector. = new Vector.();
var length1 : uint = controlPoints.length;
var n : uint = controlPoints.length – 1;
var i : uint;
var j : uint;

//Si los valores de la combinatoria para la cantidad de puntos no estan definidos, los defino…
}

//Si no hay un arreglo que guarde la referencia para un grado definido, se define…
if(coeficientesCurva[n] == undefined) {
coeficientesCurva[n] = new Array();
}

//Si no hay un arreglo que guarde los coeficientes para “m” puntos se define…
//Se guarda un arreglo de cuatro dimensiones según la siguiente definición…
//
//coeficientes[n][m][j][i] donde:
//m : cantidad de puntos a parametrizar,
//j : vector de coeficientes para un valor de parametrización perteneciente al rango [0, 1]
//i : coeficientes a multiplicar por cada punto para la parametrización anterior…
//

if(coeficientesCurva[n][m] == undefined) {
coeficientesCurva[n][m] = new Array();
for (j = 0;j < m; j++) {
//Defino la parametrización…
var delta : Number = j / (m – 1);
coeficientesCurva[n][m][j] = new Array();
for(i = 0;i <= n; i++) {
coeficientesCurva[n][m][j].push(combinatoriaData[length1][i] * Math.pow(delta, i) * Math.pow((1 – delta), (n – i)));
}
}
}

//Obtengo los distintos puntos que componen el vector de salida…
for(j = 0;j < m; j++) {
var pointer : Vector3D = new Vector3D(0, 0, 0, 0);
for(i = 0;i <= n; i++) { pointer.x += coeficientesCurva[n][m][j][i] * controlPoints[i].x; pointer.y += coeficientesCurva[n][m][j][i] * controlPoints[i].y; pointer.z += coeficientesCurva[n][m][j][i] * controlPoints[i].z; } salida.push(pointer); } //En caso de requerir bordes fijos… if(borderDistance > 0) {
//Determino la longitud de la curva y calculo el valor porcentual de la parametrización de 0 a 1
var length : Number = 0;
for(i = 1;i < salida.length; i++) {
length += Vector3D.distance(salida[i], salida[i – 1]);
}
var percentDistance : Number = borderDistance / length;
var centerDistance : Number = (1 – 2 * percentDistance) / (m – 3);
var parameters : Array = new Array();
var relativeCoeficients : Array = new Array();
parameters.push(0);
for(i = 0;i < m – 2; i++) {
parameters.push(percentDistance + i * centerDistance);
}
parameters.push(1);
//Determino el nuevo grupo de coeficientes a utilizar dependiendo de la parametrización…
for (j = 0;j < m; j++) {
relativeCoeficients.push(new Array());
for(i = 0;i <= n; i++) {
relativeCoeficients[j].push(combinatoriaData[controlPoints.length][i] * Math.pow(parameters[j], i) * Math.pow((1 – parameters[j]), (n – i)));
}
}
//Obtengo los nuevos puntos tomando en cuenta las separaciones requeridas…
salida.length = 0;
for(j = 0;j < m; j++) {
var pointer1 : Vector3D = new Vector3D(0, 0, 0, 0);
for(i = 0;i <= n; i++) {
pointer1.x += relativeCoeficients[j][i] * controlPoints[i].x;
pointer1.y += relativeCoeficients[j][i] * controlPoints[i].y;
if(_3D) pointer.z += relativeCoeficients[j][i] * controlPoints[i].z;
}
salida.push(pointer1);
}
}

return salida;
}

//Función que devuelve una superficie Bezier de MxN puntos de control (de borde e internos), se diferencia del patch porque esta última solo permite el control con las curvas de borde (no hay puntos internos…)
public static function surface(u_cps : uint, points : Vector., Ne : uint = 10, Nn : uint = 10, force : uint = 1) : Vector. {

var i : uint;
var j : uint;
var k : uint;
var r : uint;
var output : Vector. = new Vector.();
var v_cps : uint = points.length / u_cps;
var cp_curves : Array = new Array();

//Separo los puntos para obtener cada curva…
for(i = 0; i < u_cps; i++) {
cp_curves[i] = new Vector.();
for(j = i; j <= v_cps * (u_cps – 1) + i; j += u_cps) {
for(r = 0; r < force; r ++) {
cp_curves[i].push(points[j]);
}
}
}

//Genero los parámetros si no estan definidos…
if(Bezier.Ne != Ne && Bezier.Nn != Ne) {
Bezier.Ne = Ne;
Bezier.Nn = Nn;
paramsN = [];
paramsE = [];
for (i = 1;i <= Nn; i++) {
paramsN.push((i – 1) / (Nn – 1));
}

for (i = 1;i <= Ne; i++) {
paramsE.push((i – 1) / (Ne – 1));
}
}

//Genero el arreglo de puntos…
var jMax : uint = paramsN.length;
var iMax : uint = paramsE.length;

for (j = 0;j < jMax; j++) {

//Conjunto de puntos obtenidos de evaluar las curvas verticales…
var resultant_curve : Vector. = new Vector.();
for(k = 0; k < cp_curves.length; k++) {
for(r = 0; r < force; r++) {
resultant_curve.push(bezier(paramsN[j], cp_curves[k]));
}
}

//De los puntos obtenidos de las curvas verticales se obtiene una curva horizontal que al ser evaluada entrega cada punto de la superficie…
for (i = 0;i < iMax; i++) {
output.push(bezier(paramsE[i], resultant_curve));
}
}
return output;
}

//Función que se encarga de conseguir todos los puntos de una malla generada por bordes…
//Entrega los puntos ordenados de la siguiente manera suponiendo un arreglo de 3X3…
//
// 0 1 2
// 3 4 5
// 6 7 8
//

public static function getPatch(Xt0 : Vector3D, Xt1 : Vector3D, Xb0 : Vector3D, Xb1 : Vector3D, BT : Array, BB : Array, BL : Array, BR : Array, Ne : uint = 10, Nn : uint = 10, borderSeparation : Number = -1) : Array {

var i : uint;
var points : Array = new Array();

//Obtengo los puntos de las curvas para interpolar…
var b_top : Vector. = Bezier.bezierPoints(Ne, BT, borderSeparation);
var b_bottom : Vector. = Bezier.bezierPoints(Ne, BB, borderSeparation);
var b_left : Vector. = Bezier.bezierPoints(Nn, BL, borderSeparation);
var b_right : Vector. = Bezier.bezierPoints(Nn, BR, borderSeparation);

//Genero los parámetros si no estan definidos…
if(Bezier.Ne != Ne && Bezier.Nn != Ne) {
Bezier.Ne = Ne;
Bezier.Nn = Nn;
paramsN = [];
paramsE = [];
for (i = 1;i <= Nn; i++) {
paramsN.push((i – 1) / (Nn – 1));
}

for (i = 1;i <= Ne; i++) {
paramsE.push((i – 1) / (Ne – 1));
}
}

//Genero el arreglo de puntos…
var j : uint;
var jMax : uint = paramsN.length;
var iMax : uint = paramsE.length;
for (i = 0;i < iMax; i++) {
for (j = 0;j < jMax; j++) {
points.push(TFI(paramsE[i], paramsN[j], b_top[i], b_bottom[i], b_left[j], b_right[j], Xt0, Xt1, Xb0, Xb1));
}
}
return points;
}

//Función que permite liberar la memoria de la clase Bezier…
public static function clearMemory() : void {
coeficientesCurva = [];
paramsN = [];
paramsE = [];

coeficientesCurva = paramsN = paramsE = combinatoriaData = null;
}

//Función que genera una interpolación tranfinita TFI para un grupo de cuatro curvas de borde bezier.
//Se pasan los puntos de borde Xt0, Xt1, Xb0, Xb1 y los valores e, n definidos de 0 a 1 para pasar de
//estado plano al definido por las cuatro curvas… se busca generar los puntos P intermedios…
//
//
// Xt0 Xt Xt Xt Xt Xt Xt Xt1
// Xl Xr
// Xl Xr
// Xl P Xr
// Xl Xr
// Xl Xr
// Xl Xr
// Xl Xr
// Xb0 Xb Xb Xb Xb Xb Xb Xb1
//
//
private static function TFI(e : Number, n : Number, Xt : Vector3D, Xb : Vector3D, Xl : Vector3D, Xr : Vector3D , Xt0 : Vector3D, Xt1 : Vector3D, Xb0 : Vector3D, Xb1 : Vector3D) : Vector3D {

var TFIPoint : Vector3D = new Vector3D();

TFIPoint.x = (1 – n) * Xt.x + n * Xb.x + (1 – e) * Xl.x + e * Xr.x – (e * n * Xb1.x + e * (1 – n) * Xt1.x + n * (1 – e) * Xb0.x + (1 – n) * (1 – e) * Xt0.x);
TFIPoint.y = (1 – n) * Xt.y + n * Xb.y + (1 – e) * Xl.y + e * Xr.y – (e * n * Xb1.y + e * (1 – n) * Xt1.y + n * (1 – e) * Xb0.y + (1 – n) * (1 – e) * Xt0.y);
if(_3D) TFIPoint.z = (1 – n) * Xt.z + n * Xb.z + (1 – e) * Xl.z + e * Xr.z – (e * n * Xb1.z + e * (1 – n) * Xt1.z + n * (1 – e) * Xb0.z + (1 – n) * (1 – e) * Xt0.z);
TFIPoint.w = 1;
return TFIPoint;
}

//Función que realiza un set de los coeficientes en caso que cantidad de puntos sean distintos a los valores almacenados…
private static function setCoeficients(n : Number) : Array {
var datos : Array = new Array();
var i : Number;
for (i = 0;i <= n; i++) {
datos.push(MathFunctions.combinatoria(n, i));
}
return datos;
}

//fín del programa….
}
}
[/as]

As you can see all the comments are written in Spanish and many functions have so many parameters that is somehow difficult to understand what these functions do, so i´ll try to explain every function and it´s implementation in this post and in the near future post. Anyway i´ll comment some important features of it.

The combinatoriaData Array is a set of coefficients of the Berstain polinomials that are pre-calculated for degrees lower than 12, this helps us to speed the initial calculation for one interpolation. If you are going to work with a higher degree, the program calculates the coefficients for that degree and saves the values on the array.

The bezier function is the simplest function of the class, it allows to interpolate one single 3D point from a set of controlPoints and a parameter value between 0 an 1. You can use this function to get the interpolation point to point.

The bezierPoints function does the same thing but gives all the points of the interpolation in one array, you have to note that the “m” value is the number of points that you want to interpolate.  Since all the points are equidistant in the domain space you can´t control interpolation by distance from point to point in the parameter space, but there´s one parameter that allows you to at least control the initial distance between borders and the next / previous parameter point, if you would like one margin if you are treating with surfaces (i´ll promise i´ll make one example of this, because it´s difficult to understand just by reading it).

The surface function does the same thins that Away3D´s bezier surface function except that you can define the MxN control points as you want (not just 4X4 surface). To use the function you have to pass the M dimension, the Vector with the MxN points and the segmentation for the U,V direction of the surface. The last parameter, the “force” is the repetition of the control points in the surface to simulate weights  for a given controlPoints, this makes the surface approximate more to the controlPoints resulting more like a Nurbs curve with the same controlPoints. The previos function is used to calculate the surface in this post .

The getPatch function also returns a surface, but this surface has the property of being controlled only by the curves that defines the borders of the surface, it means that the internal values of the surface are only border dependant and there are no internal controlPoints for this surface. This function is more complicated to use, but is more versatil in some applications like transitions and deformations.
Finally we have written one simple implementation of this class using only the fist function “Bezier.bezier()”. If you want to see it, just click on the image in above and relax!.